Between quasi-convex and convex set-valued mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Between quasi-convex and convex set-valued mappings

The aim of this paper is to give sufficient conditions for a quasiconvex setvalued mapping to be convex. In particular, we recover several known characterizations of convex real-valued functions, given in terms of quasiconvexity and Jensen-type convexity by K. Nikodem [1], F.A. Behringer [2], and X.M. Yang, K.L. Teo and X.Q. Yang [3].

متن کامل

Characterization of (quasi)convex Set-valued Maps

The aim of this paper is to characterize in terms of classical (quasi)convexity of extended real-valued functions the set-valued maps which are K-(quasi)convex with respect to a convex cone K. In particular, we recover some known characterizations of K-(quasi)convex vector-valued functions, given by means of the polar cone of K.

متن کامل

Generalized Convex Set-Valued Maps

The aim of this paper is to show that under a mild semicontinuity assumption (the so-called segmentary epi-closedness), the cone-convex (resp. cone-quasiconvex) set-valued maps can be characterized in terms of weak cone-convexity (resp. weak cone-quasiconvexity), i.e. the notions obtained by replacing in the classical definitions the conditions of type ”for all x, y in the domain and for all t ...

متن کامل

Strongly convex set-valued maps

We introduce the notion of strongly t-convex set-valued maps and present some properties of it. In particular, a Bernstein–Doetsch and Sierpiński-type theorems for strongly midconvex set-valued maps, as well as a Kuhn-type result are obtained. A representation of strongly t-convex set-valued maps in inner product spaces and a characterization of inner product spaces involving this representatio...

متن کامل

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2004

ISSN: 0893-9659

DOI: 10.1016/s0893-9659(04)90058-4